Securing RAG Pipelines: Retrieval-Augmented Generation Threats & Defenses
Introduction
Retrieval-Augmented Generation (RAG) has become the dominant architecture for enterprise LLM applications. Instead of relying solely on the model's training data, RAG retrieves relevant documents from a knowledge base and includes them in the prompt context. **Over 80% of enterprise LLM deployments use some form of RAG** (Gartner 2025).
But RAG introduces an entirely new attack surface. The retrieval pipeline — vector databases, embedding models, document ingestion, and chunk selection — is where most AI-specific vulnerabilities live. In 2024, researchers demonstrated that **a single poisoned document in a RAG knowledge base could compromise every response** the system generates on that topic.
---
How RAG Works (& Where It Breaks)
┌────────────────────────────────────────────────────┐
│ RAG ARCHITECTURE │
│ │
│ User Query │
│ │ │
│ ▼ │
│ ┌──────────────┐ │
│ │ Embedding │ ◄── Attack: Query manipulation │
│ │ Model │ │
│ └──────┬───────┘ │
│ │ Query Vector │
│ ▼ │
│ ┌──────────────┐ │
│ │ Vector DB │ ◄── Attack: Embedding poisoning │
│ │ (Similarity │ Attack: Index manipulation │
│ │ Search) │ │
│ └──────┬───────┘ │
│ │ Top-K Documents │
│ ▼ │
│ ┌──────────────┐ │
│ │ Context │ ◄── Attack: Document poisoning │
│ │ Assembly │ Attack: Prompt injection │
│ └──────┬───────┘ via retrieved content │
│ │ Augmented Prompt │
│ ▼ │
│ ┌──────────────┐ │
│ │ LLM │ ◄── Attack: Indirect injection │
│ │ Generation │ Attack: Data exfiltration │
│ └──────┬───────┘ │
│ │ │
│ ▼ │
│ Response to User │
└────────────────────────────────────────────────────┘
---
RAG-Specific Attack Vectors
1. Document Poisoning
An attacker with write access to the knowledge base (or through user-submitted content) injects documents containing:
**Real-world example:** Researchers at Princeton showed that poisoning just **0.001% of a RAG knowledge base** (5 documents out of 500,000) could cause the model to generate attacker-chosen content 88% of the time for targeted queries.
2. Embedding Space Attacks
Vector embeddings are the mathematical representations of text. Attackers can:
**Key stat:** A 2024 study showed embedding inversion attacks could reconstruct **92% of the original text** from its embedding vector on common models like OpenAI text-embedding-ada-002.
3. Context Window Manipulation
RAG systems have a fixed context window. Attackers can exploit this:
4. Metadata Injection
Many RAG systems include document metadata (titles, authors, dates) in the prompt. Attackers can:
---
Securing RAG Pipelines
Input Validation
// Secure document ingestion pipeline
interface DocumentIngestion {
content: string;
source: string;
metadata: Record<string, string>;
}
function validateDocument(doc: DocumentIngestion): boolean {
// 1. Scan for prompt injection patterns
const injectionPatterns = [
/ignore (all |your )?(previous |prior )?instructions/i,
/you are now/i,
/system prompt/i,
/\[INST\]/i,
/<<SYS>>/i,
/### (System|Human|Assistant)/i,
/\bdo anything now\b/i,
];
for (const pattern of injectionPatterns) {
if (pattern.test(doc.content) || pattern.test(JSON.stringify(doc.metadata))) {
logSecurityEvent("injection_attempt", { source: doc.source, pattern: pattern.source });
return false;
}
}
// 2. Content length limits
if (doc.content.length > 50000) return false;
// 3. Metadata sanitization
for (const [key, value] of Object.entries(doc.metadata)) {
if (value.length > 500) return false;
if (injectionPatterns.some(p => p.test(value))) return false;
}
// 4. Source verification
if (!isAllowedSource(doc.source)) return false;
return true;
}
Retrieval Security
# Secure retrieval with access control and anomaly detection
class SecureRAGRetriever:
def __init__(self, vector_store, access_control):
self.vector_store = vector_store
self.access_control = access_control
self.anomaly_detector = EmbeddingAnomalyDetector()
def retrieve(self, query: str, user_id: str, top_k: int = 5):
# 1. Get user's access level
user_permissions = self.access_control.get_permissions(user_id)
# 2. Filter documents by access control BEFORE retrieval
allowed_collections = user_permissions.get_allowed_collections()
# 3. Retrieve with access-filtered search
results = self.vector_store.similarity_search(
query=query,
k=top_k * 3, # Over-retrieve then filter
filter={"collection": {"$in": allowed_collections}}
)
# 4. Anomaly detection on retrieved embeddings
safe_results = []
for doc in results:
if self.anomaly_detector.is_anomalous(doc.embedding):
log_security_event("anomalous_embedding", doc.metadata)
continue
safe_results.append(doc)
# 5. Content safety check on retrieved text
safe_results = [
doc for doc in safe_results
if not self.contains_injection(doc.page_content)
]
return safe_results[:top_k]
---
RAG Security Checklist
---
Key Statistics & Research
---
Conclusion
RAG is not inherently insecure — but the default implementation patterns are. Document poisoning, embedding attacks, and indirect prompt injection are real, demonstrated threats. Every RAG pipeline must include input validation, access control, anomaly detection, and output filtering.
The good news: unlike LLM model-level vulnerabilities, RAG security is mostly an engineering problem with known solutions. Build the guardrails before you ship.
**Related Resources:**
Free Security Tools
Try our tools now
Expert Services
Get professional help
OWASP Top 10
Learn the top risks
Related Articles
AI Security & LLM Threats: Prompt Injection, Data Poisoning & Beyond
A comprehensive analysis of AI/ML security risks including prompt injection, training data poisoning, model theft, and the OWASP Top 10 for LLM Applications. With practical defenses and real-world examples.
AI Red Teaming: How to Break LLMs Before Attackers Do
A practical guide to AI red teaming — adversarial testing of LLMs, prompt injection techniques, jailbreaking methodologies, and building an AI security testing program.